The Structure of an Antibiotic, B-58941

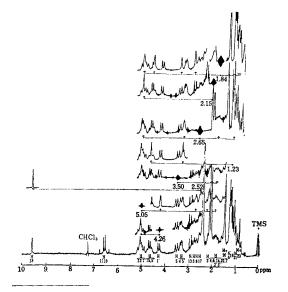
Takashi Suzuki

Research and Development Division, Takeda Chemical Ind., Ltd., Higashiyodogawa-ku, Osaka

(Received October 7, 1969)

Streptomyces fradiae var. acinicolor B-58941 produced a basic macrolide¹⁾ (I), $C_{37}H_{59}O_{12}N$, m/e 709 (M⁺), mp 229°C, $[\alpha]_{2}^{12}$ -88.4° (ϵ 1, CHCl₃), UV: 240 m μ (log ϵ : 4.21), IR: 2705, 1738, 1730, 1715, 1682, 1615 cm⁻¹, NMR*¹: 9.71 (1H, COH), 6.54 (1H, d, 16Hz), 6.34 (1H, d, 16Hz), 2.52 (6H, -NMe₂), 1.40 (3H, -C-Me), 1.3—1.0 (15H, 5 s-Me), 0.87 (3H, t), similar to acumycin²⁾ and cirramycin B.³⁾

I gave the diacetate (II), $C_{41}H_{63}O_{14}N$, mp 121°C, which lacked a free OH, and a monothiosemicarbazone which showed a new signal at 7.52 ppm (1H, t, $-N=CH-CH_2-$) in its NMR spectrum.


The mild hydrolysis of I afforded a neutral sugar (III), $C_6H_{10}O_3$, m/e 130 (M+), UV: 280 m μ (log ε : 1.27), IR: 3420, 1720 cm⁻¹, NMR: 5.7—5.0 (1H, O-CH), 4.6—3.8 (1H, Me-CH), 2.3—1.8 (4H), 1.5—1.1 (3H, s-Me), positive to Fehling's reagent and iodoform reaction, and a basic substance (IV, B-58941-B), $C_{31}H_{51}O_{10}N$, mp 123°C, UV: 240 m μ (log ε : 4.11), IR: 2725, 1740—1710, 1687, 1620 cm⁻¹, which appeared to be very similar to cirramycin A_1 (CMA₁) in its physicochemical and biochemical properties. The periodate oxidation of III yielded one mole each of acetaldehyde and succinaldehydic acid. III was concluded to be 2,3,6-trideoxyhexopyranos-4-ulose.

From the hydrolysate of IV mycaminose⁵⁾ (V), C₈H₁₇O₄N, was obtained. The catalytic reduc-

*1 Measured in CDCl₃, δ (ppm), 100 Mc.

tion of I gave a tetrahydro product which lacked an absorption maximum at $240 \text{ m}\mu$ and showed the presence of a new signal due to s-Me and the loss of the t-Me. The treatment of IV with KI-AcOH afforded a compound, UV: $281 \text{ m}\mu$ (log ε : 4.09), which showed a new signal at 1.78 ppm (3H, (s), C=C-Me).

The structure of CMA₁ has been proposed by Kawaguchi et al.,4) but the position of the attachment of the macrolactone moiety of V has not been established. The author has undertaken NMR spin-decoupling studies of II. As Fig. 1 shows, all the protons in II were unambiguously assigned, and the structure of IV was shown to be in good agreement with that of CMA1. The signal due to H₃, which was coupled to H₂ and H₄, showed a downfield shift upon acetylation, whereas the signal due to H₅ (doublet-like) did not shift. This certainly establishes that the anomeric hydroxyl of V is combined with the C5-OH of II. Since the anomeric H'₁ is coupled to H'₂, which shifts downfield upon acetylation, III should be bonding at the C'4-OH of V. In conclusion, the structure I may be proposed for B-58941.

⁴⁾ H. Tsukiura, M. Konishi, M. Saka, T. Naito and H. Kawaguchi, *ibid.*, **22**, 61, 89 (1969).

¹⁾ T. Kusaka, T. Suzuki and H. Yamamoto, Ann. Rept. Takeda Res. Lab. (in press).

²⁾ B. Bickel, E. Gäuman, R. Hütter, W. Sackmann, E. Vischer, W. Vaser, A. Wettstein and H. Zahner, *Helv. Chim. Acta*, **45**, 1396 (1962).

³⁾ H. Kawaguchi, H. Koshiyama and M. Okunishi, U. S. 3159549 (1964); H. Koshiyama, M. Okanishi, T. Ohmori, T. Miyake, H. Tsukiura, M. Matsuzaki and H. Kawaguchi, J. Antibiot., Ser. A, 16, 59 (1963).

⁵⁾ F. A. Hochstein and P. P. Regna, J. Amer. Chem. Soc., 77, 3353 (1955).